Learning to Bound the Multi-Class Bayes Error

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bayes, E-Bayes and Robust Bayes Premium Estimation and Prediction under the Squared Log Error Loss Function

In risk analysis based on Bayesian framework, premium calculation requires specification of a prior distribution for the risk parameter in the heterogeneous portfolio. When the prior knowledge is vague, the E-Bayesian and robust Bayesian analysis can be used to handle the uncertainty in specifying the prior distribution by considering a class of priors instead of a single prior. In th...

متن کامل

An upper bound to the second Hankel functional for the class of gamma-starlike functions

‎The objective of this paper is to obtain an upper bound to the second Hankel determinant $|a_{2}a_{4}-a_{3}^{2}|$‎ ‎for the function $f$‎, ‎belonging to the class of Gamma-starlike functions‎, ‎using Toeplitz determinants‎. ‎The result presented here include‎ ‎two known results as their special cases‎.  

متن کامل

Multi-class Learning: Simplex Coding and Relaxation Error

We study multi-category classification in the framework of computational learning theory. We show how a relaxation approach, which is commonly used in binary classification, can be generalized to the multi-class setting. We propose a vector coding, namely the simplex coding, that allows to introduce a new notion of multi-class margin and cast multi-category classification into a vector valued r...

متن کامل

Learning the prior for the PAC-Bayes bound

This paper presents a bound on the performance of a Support Vector Machine obtained within the PAC-Bayes framework. The bound is computed by means of the estimation of a prior of the distribution of SVM classifiers given a particular dataset, and the use of this prior in the PACBayes generalisation bound. The quality of the bound is tested in a model selection task, where it is compared against...

متن کامل

Optimizing Multi-Class Spatio-Spectral Filters via Bayes Error Estimation for EEG Classification

The method of common spatio-spectral patterns (CSSPs) is an extension of common spatial patterns (CSPs) by utilizing the technique of delay embedding to alleviate the adverse effects of noises and artifacts on the electroencephalogram (EEG) classification. Although the CSSPs method has shown to be more powerful than the CSPs method in the EEG classification, this method is only suitable for two...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Transactions on Signal Processing

سال: 2020

ISSN: 1053-587X,1941-0476

DOI: 10.1109/tsp.2020.2994807